资源论文Input Similarity from the Neural Network Perspective

Input Similarity from the Neural Network Perspective

2020-02-25 | |  47 |   36 |   0

Abstract

Given a trained neural network, we aim at understanding how similar it considers any two samples. For this, we express a proper definition of similarity from the neural network perspective (i.e. we quantify how undissociable two inputs A and B are), by taking a machine learning viewpoint: how much a parameter variation designed to change the output for A would impact the output for B as well? We study the mathematical properties of this similarity measure, and show how to estimate sample density with it, in low complexity, enabling new types of statistical analysis for neural networks. We also propose to use it during training, to enforce that examples known to be similar should also be seen as similar by the network. We then study the self-denoising phenomenon encountered in regression tasks when training neural networks on datasets with noisy labels. We exhibit a multimodal image registration task where almost perfect accuracy is reached, far beyond label noise variance. Such an impressive self-denoising phenomenon can be explained as a noise averaging effect over the labels of similar examples. We analyze data by retrieving samples perceived as similar by the network, and are able to quantify the denoising effect without requiring true labels.

上一篇:Spatial-Aware Feature Aggregation for Cross-View Image based Geo-Localization

下一篇:Fully Neural Network based Model for General Temporal Point Processes

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...