资源论文Probabilistic Logic Neural Networks for Reasoning

Probabilistic Logic Neural Networks for Reasoning

2020-02-25 | |  52 |   37 |   0

Abstract

Knowledge graph reasoning, which aims at predicting the missing facts through reasoning with the observed facts, is critical to many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle the uncertainty. However, the inference in MLNs is usually very difficult due to the complicated graph structures. Different from MLNs, knowledge graph embedding methods (e.g. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient. However, they are unable to leverage domain knowledge. In this paper, we propose the probabilistic Logic Neural Network (pLogicNet), which combines the advantages of both methods. A pLogicNet defines the joint distribution of all possible triplets by using a Markov logic network with first-order logic, which can be efficiently optimized with the variational EM algorithm. In the E-step, a knowledge graph embedding model is used for inferring the missing triplets, while in the M-step, the weights of logic rules are updated based on both the observed and predicted triplets. Experiments on multiple knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines.

上一篇:Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation

下一篇:Data-Dependence of Plateau Phenomenon in Learning with Neural Network — Statistical Mechanical Analysis

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...