资源论文Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks

Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks

2020-02-25 | |  49 |   34 |   0

Abstract

Filter pruning is one of the most effective ways to accelerate and compress convolutional neural networks (CNNs). In this work, we propose a global filter pruning algorithm called Gate Decorator, which transforms a vanilla CNN module by multiplying its output by the channel-wise scaling factors (i.e. gate). When the scaling factor is set to zero, it is equivalent to removing the corresponding filter. We use Taylor expansion to estimate the change in the loss function caused by setting the scaling factor to zero and use the estimation for the global filter importance ranking. Then we prune the network by removing those unimportant filters. After pruning, we merge all the scaling factors into its original module, so no special operations or structures are introduced. Moreover, we propose an iterative pruning framework called Tick-Tock to improve pruning accuracy. The extensive experiments demonstrate the effectiveness of our approaches. For example, we achieve the state-of-the-art pruning ratio on ResNet-56 by reducing 70% FLOPs without noticeable loss in accuracy. For ResNet-50 on ImageNet, our pruned model with 40% FLOPs reduction outperforms the baseline model by 0.31% in top-1 accuracy. Various datasets are used, including CIFAR-10, CIFAR-100, CUB-200, ImageNet ILSVRC-12 and PASCAL VOC 2011.

上一篇:Modeling Conceptual Understanding in Image Reference Games

下一篇:Abstraction based Output Range Analysis for Neural Networks

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...