资源论文Regularization Matters: Generalization andOptimization of Neural Nets v.s. their Induced Kernel

Regularization Matters: Generalization andOptimization of Neural Nets v.s. their Induced Kernel

2020-02-25 | |  52 |   40 |   0

Abstract

Recent works have shown that on sufficiently over-parametrized neural nets, gradient descent with relatively large initialization optimizes a prediction function in the RKHS of the Neural Tangent Kernel (NTK). This analysis leads to global convergence results but does not work when there is a standard 图片.png regularizer, which is useful to have in practice. We show that sample efficiency can indeed depend on the presence of the regularizer: we construct a simple distribution in d dimensions which the optimal regularized neural net learns with O(d) samples but the NTK requires 图片.png samples to learn. To prove this, we establish two analysis tools: i) for multi-layer feedforward ReLU nets, we show that the global minimizer of a weakly-regularized cross-entropy loss is the max normalized margin solution among all neural nets, which generalizes well; ii) we develop a new technique for proving lower bounds for kernel methods, which relies on showing that the kernel cannot focus on informative features. Motivated by our generalization results, we study whether the regularized global optimum is attainable. We prove that for infinite-width two-layer nets, noisy gradient descent optimizes the regularized neural net loss to a global minimum in polynomial iterations.

上一篇:Universal Invariant and Equivariant Graph Neural Networks

下一篇:Deliberative Explanations: visualizing network insecurities

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...