资源论文Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers*

Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers*

2020-02-25 | |  45 |   36 |   0

Abstract

The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn’t the trained network overfit when it is overparameterized? In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network. On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network, and connect it to the SGD theory of escaping saddle points.

上一篇:Deliberative Explanations: visualizing network insecurities

下一篇:Global Sparse Momentum SGD for Pruning Very Deep Neural Networks

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...