资源论文An Improved Analysis of Training Over-parameterized Deep Neural Networks

An Improved Analysis of Training Over-parameterized Deep Neural Networks

2020-02-25 | |  48 |   39 |   0

Abstract

A recent line of research has shown that gradient-based algorithms with random initialization can converge to the global minima of the training loss for overparameterized (i.e., sufficiently wide) deep neural networks. However, the condition on the width of the neural network to ensure the global convergence is very stringent, which is often a high-degree polynomial in the training sample size n (e.g., O(n24 )). In this paper, we provide an improved analysis of the global convergence of (stochastic) gradient descent for training deep neural networks, which only requires a milder over-parameterization condition than previous work in terms of the training sample size and other problem-dependent parameters. The main technical contributions of our analysis include (a) a tighter gradient lower bound that leads to a faster convergence of the algorithm, and (b) a sharper characterization of the trajectory length of the algorithm. By specializing our result to two-layer (i.e., one-hidden-layer) neural networks, it also provides a milder over-parameterization condition than the best-known result in prior work.

上一篇:A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks

下一篇:Blended Matching Pursuit

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...