资源论文Can SGD Learn Recurrent Neural Networks with Provable Generalization?*

Can SGD Learn Recurrent Neural Networks with Provable Generalization?*

2020-02-25 | |  36 |   32 |   0

Abstract

Recurrent Neural Networks (RNNs) are among the most popular models in sequential data analysis. Yet, in the foundational PAC learning language, what concept class can it learn? Moreover, how can the same recurrent unit simultaneously learn functions from different input tokens to different output tokens, without affecting each other? Existing generalization bounds for RNN scale exponentially with the input length, significantly limiting their practical implications. In this paper, we show using the vanilla stochastic gradient descent (SGD), RNN can actually learn some notable concept class efficiently, meaning that both time and sample complexity scale polynomially in the input length (or almost polynomially, depending on the concept). This concept class at least includes functions where each output token is generated from inputs of earlier tokens using a smooth two-layer neural network.

上一篇:Saccader: Improving Accuracy of Hard Attention Models for Vision

下一篇:Spike-Train Level Backpropagation for Training Deep Recurrent Spiking Neural Networks

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...