资源论文DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs

DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs

2020-02-25 | |  79 |   101 |   0

Abstract

In this paper, we study the problem of learning probabilistic logical rules for inductive and interpretable link prediction. Despite the importance of inductive link prediction, most previous works focused on transductive link prediction and cannot manage previously unseen entities. Moreover, they are black-box models that are not easily explainable for humans. We propose DRUM, a scalable and differentiable approach for mining first-order logical rules from knowledge graphs which resolves these problems. We motivate our method by making a connection between learning confidence scores for each rule and low-rank tensor approximation. DRUM uses bidirectional RNNs to share useful information across the tasks of learning rules for different relations. We also empirically demonstrate the efficiency of DRUM over existing rule mining methods for inductive link prediction on a variety of benchmark datasets.

上一篇:Semantic-Guided Multi-Attention Localization for Zero-Shot Learning

下一篇:Multi-mapping Image-to-Image Translation via Learning Disentanglement

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...