资源论文Hierarchical Decision Making by Generating and Following Natural Language Instructions

Hierarchical Decision Making by Generating and Following Natural Language Instructions

2020-02-25 | |  97 |   54 |   0

Abstract

We explore using natural language instructions as an expressive and compositional representation of complex actions for hierarchical decision making. Rather than directly selecting micro-actions, our agent first generates a plan in natural language, which is then executed by a separate model. We introduce a challenging real-time strategy game environment in which the actions of a large number of units must be coordinated across long time scales. We gather a dataset of 76 thousand pairs of instructions and executions from human play, and train instructor and executor models. Experiments show that models generate intermediate plans in natural langauge significantly outperform models that directly imitate human actions. The compositional structure of language is conducive to learning generalizable action representations. We also release our code, models and data23 .

上一篇:Inducing brain-relevant bias in natural language processing models

下一篇:Kernelized Bayesian Softmax for Text Generation

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...