资源论文Quantum Embedding of Knowledge for Reasoning

Quantum Embedding of Knowledge for Reasoning

2020-02-25 | |  123 |   75 |   0

Abstract

Statistical Relational Learning (SRL) methods are the most widely used techniques to generate distributional representations of the symbolic Knowledge Bases (KBs). These methods embed any given KB into a vector space by exploiting statistical similarities among its entities and predicates but without any guarantee of preserving the underlying logical structure of the KB. This, in turn, results in poor performance of logical reasoning tasks that are solved using such distributional representations. We present a novel approach called Embed2Reason (E2R) that embeds a symbolic KB into a vector space in a logical structure preserving manner. This approach is inspired by the theory of Quantum Logic. Such an embedding allows answering membership based complex logical reasoning queries with impressive accuracy improvements over popular SRL baselines.

上一篇:Controllable Text-to-Image Generation

下一篇:A Tensorized Transformer for Language Modeling

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Shape-based Autom...

    We present an algorithm for automatic detection...