资源论文Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies

Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies

2020-02-26 | |  78 |   39 |   0

Abstract

State-of-the-art efficient model-based Reinforcement Learning (RL) algorithms typically act by iteratively solving empirical models, i.e., by performing full-planning on Markov Decision Processes (MDPs) built by the gathered experience. In this paper, we focus on model-based RL in the finite-state finite-horizon undiscounted MDP setting and establish that exploring with greedy policies – act by 1-step planning – can achieve tight minimax performance in terms of regret, 图片.png Thus, full-planning in model-based RL can be avoided altogether without any performance degradation, and, by doing so, the computational complexity decreases by a factor of S. The results are based on a novel analysis of real-time dynamic programming, then extended to model-based RL. Specifically, we generalize existing algorithms that perform full-planning to act by 1-step planning. For these generalizations, we prove regret bounds with the same rate as their full-planning counterparts.

上一篇:Multi-Resolution Weak Supervision for Sequential Data

下一篇:A Structured Prediction Approach for Generalization in Cooperative Multi-Agent Reinforcement Learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...