资源论文Correlation Priors for Reinforcement Learning

Correlation Priors for Reinforcement Learning

2020-02-26 | |  72 |   43 |   0

Abstract

Many decision-making problems naturally exhibit pronounced structures inherited from the characteristics of the underlying environment. In a Markov decision process model, for example, two distinct states can have inherently related semantics or encode resembling physical state configurations. This often implies locally correlated transition dynamics among the states. In order to complete a certain task in such environments, the operating agent usually needs to execute a series of temporally and spatially correlated actions. Though there exists a variety of approaches to capture these correlations in continuous state-action domains, a principled solution for discrete environments is missing. In this work, we present a Bayesian learning framework based on P?ya-Gamma augmentation that enables an analogous reasoning in such cases. We demonstrate the framework on a number of common decision-making related problems, such as imitation learning, subgoal extraction, system identification and Bayesian reinforcement learning. By explicitly modeling the underlying correlation structures of these problems, the proposed approach yields superior predictive performance compared to correlation-agnostic models, even when trained on data sets that are an order of magnitude smaller in size.

上一篇:LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning

下一篇:Fully Parameterized Quantile Function for Distributional Reinforcement Learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...