资源论文Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters

Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters

2020-02-26 | |  73 |   43 |   0

Abstract

How does the uncertainty of the value function propagate when performing temporal difference learning? In this paper, we address this question by proposing a Bayesian framework in which we employ approximate posterior distributions to model the uncertainty of the value function and Wasserstein barycenters to propagate it across state-action pairs. Leveraging on these tools, we present an algorithm, Wasserstein Q-Learning (WQL), starting in the tabular case and then, we show how it can be extended to deal with continuous domains. Furthermore, we prove that, under mild assumptions, a slight variation of WQL enjoys desirable theoretical properties in the tabular setting. Finally, we present an experimental campaign to show the effectiveness of WQL on finite problems, compared to several RL algorithms, some of which are specifically designed for exploration, along with some preliminary results on Atari games.

上一篇:Reinforcement Learning with Convex Constraints

下一篇:Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...