资源论文Explicit Planning for Efficient Exploration in Reinforcement Learning

Explicit Planning for Efficient Exploration in Reinforcement Learning

2020-02-26 | |  105 |   44 |   0

Abstract

Efficient exploration is crucial to achieving good performance in reinforcement learning. Existing systematic exploration strategies (R-MAX, MBIE, UCRL, etc.), despite being promising theoretically, are essentially greedy strategies that follow some predefined heuristics. When the heuristics do not match the dynamics of Markov decision processes (MDPs) well, an excessive amount of time can be wasted in travelling through already-explored states, lowering the overall efficiency. We argue that explicit planning for exploration can help alleviate such a problem, and propose a Value Iteration for Exploration Cost (VIEC) algorithm which computes the optimal exploration scheme by solving an augmented MDP. We then present a detailed analysis of the exploration behaviour of some popular strategies, showing how these strategies can fail and spend O(n2 md) or O(n2 m + nmd) steps to collect sufficient data in some tower-shaped MDPs, while the optimal exploration scheme, which can be obtained by VIEC, only needs O(nmd), where n, m are the numbers of states and actions and d is the data demand. The analysis not only points out the weakness of existing heuristic-based strategies, but also suggests a remarkable potential in explicit planning for exploration.

上一篇:A Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation

下一篇:Policy Poisoning in Batch Reinforcement Learning and Control

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...