资源论文Analysis of a Classification-based Policy Iteration Algorithm

Analysis of a Classification-based Policy Iteration Algorithm

2020-02-26 | |  67 |   42 |   0

Abstract

We present a classification-based policy iteration algorithm, called Direct Policy Iteration, and provide its finite-sample analysis. Our results state a performance bound in terms of the number of policy improvement steps, the number of rollouts used in each iteration, the capacity of the considered policy space, and a new capacity measure which indicates how well the policy space can approximate policies that are greedy w.r.t. any of its members. The analysis reveals a tradeoff between the estimation and approximation errors in this classification-based policy iteration setting. We also study the consistency of the method when there exists a sequence of policy spaces with increasing capacity.

上一篇:Deep learning via Hessian-free optimization

下一篇:Modeling Interaction via the Principle of Maximum Causal Entropy

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...