资源论文An Analysis of the Convergence of Graph Laplacians

An Analysis of the Convergence of Graph Laplacians

2020-02-26 | |  70 |   45 |   0

Abstract

Existing approaches to analyzing the asymptotics of graph Laplacians typically assume a well-behaved kernel function with smoothness assumptions. We remove the smoothness assumption and generalize the analysis of graph Laplacians to include previously unstudied graphs including kNN graphs. We also introduce a kernel-free framework to analyze graph constructions with shrinking neighborhoods in general and apply it to analyze locally linear embedding (LLE). We also describe how, for a given limit operator, desirable properties such as a convergent spectrum and sparseness can be achieved by choosing the appropriate graph construction.

上一篇:Learning Programs: A Hierarchical Bayesian Approach

下一篇:Simple and Efficient Multiple Kernel Learning by Group Lasso

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...