资源算法Caffe-MobileNetV2-ReLU6

Caffe-MobileNetV2-ReLU6

2020-02-27 | |  69 |   0 |   0

Caffe-MobileNetV2-ReLU6

Caffe Implementation of ReLU6 Layer, Required By MobileNetV2.

ReLU6 Utilize

You should move .c* files to /path/to/caffe/src/caffe/layers/ and .hpp files to /path/to/caffe/include/caffe/layers/

Then add these lines to your caffe.proto file:

optional ReLU6Parameter relu6_param = 100000;
message ReLU6Parameter {
  optional float negative_slope = 1 [default = 0];
}

Experiments On ImageNet

I got top-1 error of 28.208% on imagenet which is slightly better than the performance claimed in paper(https://arxiv.org/abs/1801.04381).

I trained my model using farmingyard's MobileNetV2 config(https://github.com/farmingyard/caffe-mobilenet_v2) but replacing all ReLU Layers by ReLU6 Layers.

Unfortunately my inference is really time-consuming mainly caused by the ineffient caffe implementation of depthwise conv.


上一篇: SSD_mobilenetv2-with-Focal-loss

下一篇:MobileNetV2-PoseEstimation

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • tensorflow-sketch...

    Discrlaimer: This is not an official Google pro...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...