资源算法Caffe-MobileNetV2-ReLU6

Caffe-MobileNetV2-ReLU6

2020-02-27 | |  95 |   0 |   0

Caffe-MobileNetV2-ReLU6

Caffe Implementation of ReLU6 Layer, Required By MobileNetV2.

ReLU6 Utilize

You should move .c* files to /path/to/caffe/src/caffe/layers/ and .hpp files to /path/to/caffe/include/caffe/layers/

Then add these lines to your caffe.proto file:

optional ReLU6Parameter relu6_param = 100000;
message ReLU6Parameter {
  optional float negative_slope = 1 [default = 0];
}

Experiments On ImageNet

I got top-1 error of 28.208% on imagenet which is slightly better than the performance claimed in paper(https://arxiv.org/abs/1801.04381).

I trained my model using farmingyard's MobileNetV2 config(https://github.com/farmingyard/caffe-mobilenet_v2) but replacing all ReLU Layers by ReLU6 Layers.

Unfortunately my inference is really time-consuming mainly caused by the ineffient caffe implementation of depthwise conv.


上一篇: SSD_mobilenetv2-with-Focal-loss

下一篇:MobileNetV2-PoseEstimation

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • allennlp-dureader

    An Apache 2.0 NLP research library, built on Py...

  • honk-honk-motherf...

    honk-honk-motherfucker