资源论文Bayesian Multi-Task Reinforcement Learning

Bayesian Multi-Task Reinforcement Learning

2020-02-27 | |  78 |   44 |   0

Abstract

We consider the problem of multi-task reinforcement learning where the learner is provided with a set of tasks, for which only a small number of samples can be generated for any given policy. As the number of samples may not be enough to learn an accurate evaluation of the policy, it would be necessary to identify classes of tasks with similar structure and to learn them jointly. We consider the case where the tasks share structure in their value functions, and model this by assuming that the value functions are all sampled from a common prior. We adopt the Gaussian process temporal-difference value function model and use a hierarchical Bayesian approach to model the distribution over the value functions. We study two cases, where all the value functions belong to the same class and where they belong to an undefined number of classes. For each case, we present a hierarchical Bayesian model, and derive inference algorithms for (i) joint learning of the value functions, and (ii) efficient transfer of the information gained in (i) to assist learning the value function of a newly observed task.

上一篇:Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis

下一篇:Nonparametric Return Distribution Approximation for Reinforcement Learning

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...