资源论文Constructing States for Reinforcement Learning

Constructing States for Reinforcement Learning

2020-02-27 | |  74 |   43 |   0

Abstract

POMDPs are the models of choice for reinforcement learning (RL) tasks where the environment cannot be observed directly. In many applications we need to learn the POMDP structure and parameters from experience and this is considered to be a difficult problem. In this paper we address this issue by modeling the hidden environment with a novel class of models that are less expressive, but easier to learn and plan with than POMDPs. We call these models deterministic Markov models (DMMs), which are deterministic-probabilistic finite automata from learning theory, extended with actions to the sequential (rather than i.i.d.) setting. Conceptually, we extend the Utile Suffix Memory method of McCallum to handle long term memory. We describe DMMs, give Bayesian algorithms for learning and planning with them and also present experimental results for some standard POMDP tasks and tasks to illustrate its efficacy.

上一篇:Nonparametric Return Distribution Approximation for Reinforcement Learning

下一篇:Model-based reinforcement learning with nearly tight exploration complexity bounds

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...