资源论文Vector-valued Manifold Regularization

Vector-valued Manifold Regularization

2020-02-27 | |  66 |   38 |   0

Abstract

We consider the general problem of learning an unknown functional dependency, f : X → Y, between a structured input space X and a structured output space Y, from labeled and unlabeled examples. We formulate this problem in terms of data-dependent regularization in Vector-valued Reproducing Kernel Hilbert Spaces (Micchelli & Pontil, 2005) which elegantly extend familiar scalarvalued kernel methods to the general setting where Y has a Hilbert space structure. Our methods provide a natural extension of Manifold Regularization (Belkin et al., 2006) algorithms to also exploit output inter-dependencies while enforcing smoothness with respect to input data geometry. We propose a class of matrix-valued kernels which allow efficient implementations of our algorithms via the use of numerical solvers for Sylvester matrix equations. On multilabel image annotation and text classification problems, we find favorable empirical comparisons against several competing alternatives.

上一篇:Computational Rationalization: The Inverse Equilibrium Problem

下一篇:Hashing with Graphs

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...