资源论文Learning Deep Energy Models

Learning Deep Energy Models

2020-02-27 | |  90 |   48 |   0

Abstract

Deep generative models with multiple hidden layers have been shown to be able to learn meaningful and compact representations of data. In this work we propose deep energy models, which use deep feedforward neural networks to model the energy landscapes that define probabilistic models. We are able to efficiently train all layers of our model simultaneously, allowing the lower layers of the model to adapt to the training of the higher layers, and thereby producing better generative models. We evaluate the generative performance of our models on natural images and demonstrate that this joint training of multiple layers yields qualitative and quantitative improvements over greedy layerwise training. We further generalize our models beyond the commonly used sigmoidal neural networks and show how a deep extension of the product of Student-t distributions model achieves good generative performance. Finally, we introduce a discriminative extension of our model and demonstrate that it outperforms other fully-connected models on object recognition on the NORB dataset.

上一篇:Infinite Dynamic Bayesian Networks

下一篇:Learning Linear Functions with Quadratic and Linear Multiplicative Updates

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...