资源论文Dynamic Tree Block Coordinate Ascent

Dynamic Tree Block Coordinate Ascent

2020-02-27 | |  59 |   38 |   0

Abstract

This paper proposes a novel Linear Programming (LP) based algorithm, called Dynamic Tree-Block Coordinate Ascent (DTBCA), for performing maximum a posteriori (MAP) inference in probabilistic graphical models. Unlike traditional message passing algorithms, which operate uniformly on the whole factor graph, our method dynamically chooses regions of the factor graph on which to focus message-passing efforts. We propose two criteria for selecting regions, including an efficiently computable upperbound on the increase in the objective possible by passing messages in any particular region. This bound is derived from the theory of primal-dual methods from combinatorial optimization, and the forest that maximizes the bounds can be chosen efficiently using a maximum-spanning-tree-like algorithm. Experimental results show that our dynamic schedules significantly speed up state-of-theart LP-based message-passing algorithms on a wide variety of real-world problems.

上一篇:Mapping Kernels for Trees

下一篇:Uncovering the Temporal Dynamics of Diffusion Networks

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...