资源论文Learning Recurrent Neural Networks with Hessian-Free Optimization

Learning Recurrent Neural Networks with Hessian-Free Optimization

2020-02-27 | |  60 |   44 |   0

Abstract

In this work we resolve the long-outstanding problem of how to effectively train recurrent neural networks (RNNs) on complex and difficult sequence modeling problems which may contain long-term data dependencies. Utilizing recent advances in the Hessian-free optimization approach (Martens, 2010), together with a novel damping scheme, we successfully train RNNs on two sets of challenging problems. First, a collection of pathological synthetic datasets which are known to be impossible for standard optimization approaches (due to their extremely long-term dependencies), and second, on three natural and highly complex real-world sequence datasets where we find that our method significantly outperforms the previous state-of-theart method for training neural sequence models: the Long Short-term Memory approach of Hochreiter and Schmidhuber (1997). Additionally, we offer a new interpretation of the generalized Gauss-Newton matrix of Schraudolph (2002) which is used within the HF approach of Martens.

上一篇:Relevance and Ranking in Online Dating Systems

下一篇:Variational Inference for Stick-Breaking Beta Process Priors

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...