Abstract
With the advent of kernel methods, automating the task of specifying a suitable kernel has become increasingly important. In this context, the Multiple Kernel Learning (MKL) problem of finding a combination of prespecified base kernels that is suitable for the task at hand has received significant attention from researchers. In this paper we show that Multiple Kernel Learning can be framed as a standard binary classification problem with additional constraints that ensure the positive definiteness of the learned kernel. Framing MKL in this way has the distinct advantage that it makes it easy to leverage the extensive research in binary classification to develop better performing and more scalable MKL algorithms that are conceptually simpler, and, arguably, more accessible to practitioners. Experiments on nine data sets from different domains show that, despite its simplicity, the proposed technique compares favorably with current leading MKL approaches.