资源论文Safe Exploration in Markov Decision Processes

Safe Exploration in Markov Decision Processes

2020-02-28 | |  50 |   49 |   0

Abstract

In environments with uncertain dynamics exploration is necessary to learn how to perform well. Existing reinforcement learning algorithms provide strong exploration guarantees, but they tend to rely on an ergodicity assumption. The essence of ergodicity is that any state is eventually reachable from any other state by following a suitable policy. This assumption allows for exploration algorithms that operate by simply favoring states that have rarely been visited before. For most physical systems this assumption is impractical as the systems would break before any reasonable exploration has taken place, i.e., most physical systems don’t satisfy the ergodicity assumption. In this paper we address the need for safe exploration methods in Markov decision processes. We first propose a general formulation of safety through ergodicity. We show that imposing safety by restricting attention to the resulting set of guaranteed safe policies is NP-hard. We then present an efficient algorithm for guaranteed safe, but potentially suboptimal, exploration. At the core is an optimization formulation in which the constraints restrict attention to a subset of the guaranteed safe policies and the objective favors exploration policies. Our framework is compatible with the majority of previously proposed exploration methods, which rely on an exploration bonus. Our experiments, which include a Martian terrain exploration problem, show that our method is able to explore better than classical exploration methods.

上一篇:An Efficient Approach to Sparse Linear Discriminant Analysis

下一篇:Batch Active Learning via Coordinated Matching

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...