资源论文Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models

Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models

2020-02-28 | |  46 |   42 |   0

Abstract

We study the convergence rate of stochastic optimization of exact (NP-hard) objectives, for which only biased estimates of the gradient are available. We motivate this problem in the context of learning the structure and parameters of Ising models. We first provide a convergence-rate analysis of deterministic errors for forward-backward splitting (FBS). We then extend our analysis to biased stochastic errors, by first characterizing a family of samplers and providing a high probability bound that allows understanding not only FBS, but also proximal gradient (PG) methods. We derive some interesting conclusions: FBS requires only a logarithmically increasing number of random samples in order to converge (although at a very low rate); the required number of random samples is the same for the deterministic and the biased stochastic setting for FBS and basic PG; accelerated PG is not guaranteed to converge in the biased stochastic setting.

上一篇:Deep Mixtures of Factor Analysers

下一篇:Apprenticeship Learning for Model Parameters of Partially Observable Environments

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...