资源论文LPQP for MAP: Putting LP Solvers to Better Use

LPQP for MAP: Putting LP Solvers to Better Use

2020-02-28 | |  45 |   41 |   0

Abstract

MAP inference for general energy functions remains a challenging problem. While most efforts are channeled towards improving the linear programming (LP) based relaxation, this work is motivated by the quadratic programming (QP) relaxation. We propose a novel MAP relaxation that penalizes the Kullback-Leibler divergence between the LP pairwise auxiliary variables, and QP equivalent terms given by the product of the unaries. We develop two efficient algorithms based on variants of this relaxation. The algorithms minimize the non-convex objective using belief propagation and dual decomposition as building blocks. Experiments on synthetic and real-world data show that the solutions returned by our algorithms substantially improve over the LP relaxation.

上一篇:Learning to Label Aerial Images from Noisy Data

下一篇:Conditional mean embeddings as regressors

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...