资源论文Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings

Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings

2020-02-28 | |  54 |   36 |   0

Abstract

Stochastic neighbor embedding (SNE) and related nonlinear manifold learning algorithms achieve high-quality low-dimensional representations of similarity data, but are notoriously slow to train. We propose a generic formulation of embedding algorithms that includes SNE and other existing algorithms, and study their relation with spectral methods and graph Laplacians. This allows us to define several partial-Hessian optimization strategies, characterize their global and local convergence, and evaluate them empirically. We achieve up to two orders of magnitude speedup over existing training methods with a strategy (which we call the spectral direction) that adds nearly no overhead to the gradient and yet is simple, scalable and applicable to several existing and future embedding algorithms.

上一篇:Learning Parameterized Skills

下一篇:Compact Hyperplane Hashing with Bilinear Functions

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...