资源论文Clustering by Low-Rank Doubly Stochastic Matrix Decomposition

Clustering by Low-Rank Doubly Stochastic Matrix Decomposition

2020-03-02 | |  104 |   59 |   0

Abstract

Clustering analysis by nonnegative lowrank approximations has achieved remarkable progress in the past decade. However, most approximation approaches in this direction are still restricted to matrix factorization. We propose a new low-rank learning method to improve the clustering performance, which is beyond matrix factorization. The approximation is based on a twostep bipartite random walk through virtual cluster nodes, where the approximation is formed by only cluster assigning probabilities. Minimizing the approximation error measured by Kullback-Leibler divergence is equivalent to maximizing the likelihood of a discriminative model, which endows our method with a solid probabilistic interpretation. The optimization is implemented by a relaxed Majorization-Minimization algorithm that is advantageous in finding good local minima. Furthermore, we point out that the regularized algorithm with Dirichlet prior only serves as initialization. Experimental results show that the new method has strong performance in clustering purity for various datasets, especially for large-scale manifold data.

上一篇:Finding Botnets Using Minimal Graph Clusterings

下一篇:Groupwise Constrained Reconstruction for Subspace Clustering

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...