资源论文Bayesian and L1 Approaches for Sparse Unsupervised Learning

Bayesian and L1 Approaches for Sparse Unsupervised Learning

2020-03-02 | |  57 |   33 |   0

Abstract

The use of L1 regularisation for sparse learning has generated immense research interest, with many successful applications in diverse areas such as signal acquisition, image coding, genomics and collaborative filtering. While existing work highlights the many advantages of L1 methods, in this paper we find that L1 regularisation often dramatically under-performs in terms of predictive performance when compared to other methods for inferring sparsity. We focus on unsupervised latent variable models, and develop L1 minimising factor models, Bayesian variants of “L1 ”, and Bayesian models with a stronger L0 -like sparsity induced through spike-and-slab distributions. These spikeand-slab Bayesian factor models encourage sparsity while accounting for uncertainty in a principled manner, and avoid unnecessary shrinkage of non-zero values. We demonstrate on a number of data sets that in practice spike-and-slab Bayesian methods outperform L1 minimisation, even on a computational budget. We thus highlight the need to re-assess the wide use of L1 methods in sparsity-reliant applications, particularly when we care about generalising to previously unseen data, and provide an alternative that, over many varying conditions, provides improved generalisation performance.

上一篇:Agglomerative Bregman Clustering

下一篇:Demand-Driven Clustering in Relational Domains for Predicting Adverse Drug Events

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...