资源论文Hierarchical Tensor Decomposition of Latent Tree Graphical Models

Hierarchical Tensor Decomposition of Latent Tree Graphical Models

2020-03-02 | |  66 |   40 |   0

Abstract

We approach the problem of estimating the parameters of a latent tree graphical model from a hierarchical tensor decomposition point of view. In this new view, the marginal probability table of the observed variables is treated as a tensor, and we show that: (i ) the latent variables induce low rank structures in various matricizations of the tensor; (ii ) this collection of low rank matricizations induces a hierarchical low rank decomposition of the tensor. We further derive an optimization problem for estimating (alternative) parameters of a latent tree graphical model, allowing us to represent the marginal probability table of the observed variables in a compact and robust way. The optimization problem aims to find the best hierarchical low rank approximation of a tensor in Frobenius norm. For correctly specified latent tree graphical models, we show that a global optimum of the optimization problem can be obtained via a recursive decomposition algorithm. This algorithm recovers previous spectral algorithms for hidden Markov models (Hsu et al., 2009; Foster et al., 2012) and latent tree graphical models (Parikh et al., 2011; Song et al., 2011) as special cases, elucidating the global objective these algorithms are optimizing. For misspecified latent tree graphical models, we derive a novel decomposition based on our framework, and provide approximation guarantee and computational complexity analysis. In both synthetic and real world data, this new estimator significantly improves over the state-of-the-art.

上一篇:Better Rates for Any Adversarial Deterministic MDP

下一篇:Efficient Dimensionality Reduction for Canonical Correlation Analysis

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...