资源论文Active Learning for Multi-Objective Optimization

Active Learning for Multi-Objective Optimization

2020-03-02 | |  62 |   50 |   0

Abstract

In many fields one encounters the challenge of identifying, out of a pool of possible designs, those that simultaneously optimize multiple objectives. This means that usually there is not one optimal design but an entire set of Pareto-optimal ones with optimal tradeoffs in the objectives. In many applications, evaluating one design is expensive; thus, an exhaustive search for the Pareto-optimal set is unfeasible. To address this challenge, we propose the Pareto Active Learning (PAL) algorithm which intelligently samples the design space to predict the Pareto-optimal set. Key features of PAL include (1) modeling the objectives as samples from a Gaussian process distribution to capture structure and accomodate noisy evaluation; (2) a method to carefully choose the next design to evaluate to maximize progress; and (3) the ability to control prediction accuracy and sampling cost. We provide theoretical bounds on PAL’s sampling cost required to achieve a desired accuracy. Further, we show an experimental evaluation on three real-world data sets. The results show PAL’s effectiveness; in particular it improves significantly over a state-of-the-art multi-objective optimization method, saving in many cases about 33% evaluations to achieve the same accuracy. Proceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume 28. Copyright 2013 by the author(s).

上一篇:Intersecting singularities for multi-structured estimation

下一篇:Ellipsoidal Multiple Instance Learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...