资源论文Expensive Function Optimization with Stochastic Binary Outcomes

Expensive Function Optimization with Stochastic Binary Outcomes

2020-03-02 | |  97 |   44 |   0

Abstract

Real world systems often have parameterized controllers which can be tuned to improve performance. Bayesian optimization methods provide for efficient optimization of these controllers, so as to reduce the number of required experiments on the expensive physical system. In this paper we address Bayesian optimization in the setting where performance is only observed through a stochastic binary outcome – success or failure of the experiment. Unlike bandit problems, the goal is to maximize the system performance after this offline training phase rather than minimize regret during training. In this work we define the stochastic binary optimization problem and propose an approach using an adaptation of Gaussian Processes for classification that presents a Bayesian optimization framework for this problem. We propose an experiment selection metric for this setting based on expected improvement. We demonstrate the algorithm’s performance on synthetic problems and on a real snake robot learning to move over an obstacle.

上一篇:Estimating Unknown Sparsity in Compressed Sensing

下一篇:An Optimal Policy for Target Localization with Application to Electron Microscopy

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...