资源论文Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

2020-03-02 | |  56 |   36 |   0

Abstract

Active learning can lead to a dramatic reduction in labeling effort. However, in many practical implementations (such as crowdsourcing, surveys, high-throughput experimental design), it is preferable to query labels for batches of examples to be labelled in parallel. While several heuristics have been proposed for batch-mode active learning, little is known about their theoretical performance. We consider batch mode active learning and more general information-parallel stochastic optimization problems that exhibit adaptive submodularity, a natural diminishing returns condition. We prove that for such problems, a simple greedy strategy is competitive with the optimal batch-mode policy. In some cases, surprisingly, the use of batches incurs competitively low cost, even when compared to a fully sequential strategy. We demonstrate the effectiveness of our approach on batch-mode active learning tasks, where it outperforms the state of the art, as well as the novel problem of multi-stage influence maximization in social networks.

上一篇:Dynamic Covariance Models for Multivariate Financial Time Series

下一篇:Sparsity-Based Generalization Bounds for Predictive Sparse Coding

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...