资源论文One-bit Compressed Sensing: Provable Support and Vector Recovery

One-bit Compressed Sensing: Provable Support and Vector Recovery

2020-03-02 | |  50 |   50 |   0

Abstract

In this paper, we study the problem of onebit compressed sensing (1-bit CS), where the goal is to design a measurement matrix A and a recovery algorithm such that a k-sparse unit vector x* can be efficiently recovered from the sign of its linear measurements, i.e., 图片.png This is an important problem for signal acquisition and has several learning applications as well, e.g., multi-label classification (Hsu et al., 2009). We study this problem in two settings: a) support recovery: recover the support of x* , b) approximate vector recovery: recover a unit vector 图片.png such that 图片.png For support recovery, we propose two novel and efficient solutions based on two combinatorial structures: union free families of sets and expanders. In contrast to existing methods for support recovery, our methods are universal i.e. a single measurement matrix A can recover all the signals. For approximate recovery, we propose the first method to recover a sparse vector using a near optimal number of measurements. We also empirically validate our algorithms and demonstrate that our algorithms recover the true signal using fewer measurements than the existing methods.

上一篇:Distribution to Distribution Regression

下一篇:Thompson Sampling for Contextual Bandits with Linear Payoffs

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...