资源论文Making Fisher Discriminant Analysis Scalable

Making Fisher Discriminant Analysis Scalable

2020-03-03 | |  73 |   34 |   0

Abstract

The Fisher linear discriminant analysis (LDA) is a classical method for classification and dimension reduction jointly. A major limitation of the conventional LDA is a so-called singularity issue. Many LDA variants, especially two-stage methods such as PCA+LDA and LDA/QR, were proposed to solve this issue. In the two-stage methods, an intermediate stage for dimension reduction is developed before the actual LDA method works. These two-stage methods are scalable because they are an approximate alternative of the LDA method. However, there is no theoretical analysis on how well they approximate the conventional LDA problem. In this paper we present theoretical analysis on the approximation error of a two-stage algorithm. Accordingly, we develop a new two-stage algorithm. Furthermore, we resort to a random projection approach, making our algorithm scalable. We also provide an implemention on distributed system to handle large scale problems. Our algorithm takes LDA/QR as its special case, and outperforms PCA+LDA while having a similar scalability. We also generalize our algorithm to kernel discriminant analysis, a nonlinear version of the classical LDA. Extensive experiments show that our algorithms outperform PCA+LDA and have a similar scalability with it.

上一篇:Convergence rates for persistence diagram estimation in Topological Data Analysis

下一篇:Marginal Structured SVM with Hidden Variables

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...