资源论文Memory and Computation Efficient PCA via Very Sparse Random Projections

Memory and Computation Efficient PCA via Very Sparse Random Projections

2020-03-03 | |  48 |   31 |   0

Abstract

Algorithms that can efficiently recover principal components in very high-dimensional, streaming, and/or distributed data settings have become an important topic in the literature. In this paper, we propose an approach to principal component estimation that utilizes projections onto very sparse random vectors with Bernoulli-generated nonzero entries. Indeed, our approach is simultaneously efficient in memory/storage space, efficient in computation, and produces accurate PC estimates, while also allowing for rigorous theoretical performance analysis. Moreover, one can tune the sparsity of the random vectors deliberately to achieve a desired point on the tradeoffs between memory, computation, and accuracy. We rigorously characterize these tradeoffs and provide statistical performance guarantees. In addition to these very sparse random vectors, our analysis also applies to more general random projections. We present experimental results demonstrating that this approach allows for simultaneously achieving a substantial reduction of the computational complexity and memory/storage space, with little loss in accuracy, particularly for very high-dimensional data.

上一篇:Hierarchical Dirichlet Scaling Process

下一篇:GEV-Canonical Regression for Accurate Binary Class Probability Estimation when One Class is Rare

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...