资源论文Low-Density Parity Constraints for Hashing-Based Discrete Integration

Low-Density Parity Constraints for Hashing-Based Discrete Integration

2020-03-03 | |  60 |   42 |   0

Abstract

In recent years, a number of probabilistic inference and counting techniques have been proposed that exploit pairwise independent hash functions to infer properties of succinctly defined high-dimensional sets. While providing desirable statistical guarantees, typical constructions of such hash functions are themselves not amenable to efficient inference. Inspired by the success of LDPC codes, we propose the use of low-density parity constraints to make inference more tractable in practice. While not strongly universal, we show that such sparse constraints belong to a new class of hash functions that we call Average Universal. These weaker hash functions retain the desirable statistical guarantees needed by most such probabilistic inference methods. Thus, they continue to provide provable accuracy guarantees while at the same time making a number of algorithms significantly more scalable in practice. Using this technique, we provide new, tighter bounds for challenging discrete integration and model counting problems.

上一篇:Linear and Parallel Learning of Markov Random Fields

下一篇:Ensemble Methods for Structured Prediction

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...