资源论文Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction

Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction

2020-03-03 | |  66 |   48 |   0

Abstract

Predicting protein secondary structure is a fundamental problem in protein structure prediction. Here we present a new supervised generative stochastic network (GSN) based method to predict local secondary structure with deep hierarchical representations. GSN is a recently proposed deep learning technique (Bengio & Thibodeau-Laufer, 2013) to globally train deep generative model. We present the supervised extension of GSN, which learns a Markov chain to sample from a conditional distribution, and applied it to protein structure prediction. To scale the model to full-sized, high-dimensional data, like protein sequences with hundreds of aminoacids, we introduce a convolutional architecture, which allows efficient learning across multiple layers of hierarchical representations. Our architecture uniquely focuses on predicting structured low-level labels informed with both low and high-level representations learned by the model. In our application this corresponds to labeling the secondary structure state of each amino-acid residue. We trained and tested the model on separate sets of non-homologous proteins sharing less than 30% sequence identity. Our model achieves 66.4% Q8 accuracy on the CB513 dataset, better than the previously reported best performance 64.9% (Wang et al., 2011) for this challenging secondary structure prediction problem.

上一篇:Concentration in unbounded metric spaces and algorithmic stability

下一篇:Sparse meta-Gaussian information bottleneck

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...