资源论文Linear Programming for Large-Scale Markov Decision Problems

Linear Programming for Large-Scale Markov Decision Problems

2020-03-03 | |  68 |   40 |   0

Abstract

We consider the problem of controlling a Markov decision process (MDP) with a large state space, so as to minimize average cost. Since it is intractable to compete with the optimal policy for large scale problems, we pursue the more modest goal of competing with a low-dimensional family of policies. We use the dual linear programming formulation of the MDP average cost problem, in which the variable is a stationary distribution over state-action pairs, and we consider a neighborhood of a low-dimensional subset of the set of stationary distributions (defined in terms of state-action features) as the comparison class. We propose a technique based on stochastic convex optimization and give bounds that show that the performance of our algorithm approaches the best achievable by any policy in the comparison class. Most importantly, this result depends on the size of the comparison class, but not on the size of the state space. Preliminary experiments show the effectiveness of the proposed algorithm in a queuing application.

上一篇:Asynchronous Distributed ADMM for Consensus Optimization

下一篇:The f -Adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...