资源论文Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing

Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing

2020-03-03 | |  81 |   39 |   0

Abstract

Recently, convex solutions to low-rank matrix factorization problems have received increasing attention in machine learning. However, in many applications the data can display other structures beyond simply being low-rank. For example, images and videos present complex spatio-temporal structures, which are largely ignored by current low-rank methods. In this paper we explore a matrix factorization technique suitable for large datasets that captures additional structure in the factors by using a projective tensor norm, which includes classical image regularizers such as total variation and the nuclear norm as particular cases. Although the resulting optimization problem is not convex, we show that under certain conditions on the factors, any local minimizer for the factors yields a global minimizer for their product. Examples in biomedical video segmentation and hyperspectral compressed recovery show the advantages of our approach on high-dimensional datasets.

上一篇:Nonparametric Estimation of Multi-View Latent Variable Models

下一篇:Towards End-to-End Speech Recognition with Recurrent Neural Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...