资源论文Scaling Up Robust MDPs using Function Approximation

Scaling Up Robust MDPs using Function Approximation

2020-03-04 | |  84 |   46 |   0

Abstract

We consider large-scale Markov decision processes (MDPs) with parameter uncertainty, under the robust MDP paradigm. Previous studies showed that robust MDPs, based on a minimax approach to handling uncertainty, can be solved using dynamic programming for small to medium sized problems. However, due to the “curse of dimensionality”, MDPs that model real-life problems are typically prohibitively large for such approaches. In this work we employ a reinforcement learning approach to tackle this planning problem: we develop a robust approximate dynamic programming method based on a projected fixed point equation to approximately solve large scale robust MDPs. We show that the proposed method provably succeeds under certain technical conditions, and demonstrate its effectiveness through simulation of an option pricing problem. To the best of our knowledge, this is the first attempt to scale up the robust MDP paradigm.

上一篇:Filtering with Abstract Particles

下一篇:Learning Theory and Algorithms for Revenue Optimization in Second-Price Auctions with Reserve

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...