资源论文Nuclear Norm Minimization via Active Subspace Selection

Nuclear Norm Minimization via Active Subspace Selection

2020-03-04 | |  54 |   37 |   0

Abstract

We describe a novel approach to optimizing matrix problems involving nuclear norm regularization and apply it to the matrix completion problem. We combine methods from non-smooth and smooth optimization. At each step we use the proximal gradient to select an active subspace. We then find a smooth, convex relaxation of the smaller subspace problems and solve these using second order methods. We apply our methods to matrix completion problems including Netflix dataset, and show that they are more than 6 times faster than stateof-the-art nuclear norm solvers. Also, this is the first paper to scale nuclear norm solvers to the Yahoo-Music dataset, and the first time in the literature that the efficiency of nuclear norm solvers can be compared and even compete with non-convex solvers like Alternating Least Squares (ALS).

上一篇:Efficient Continuous-Time Markov Chain Estimation

下一篇:Large-Margin Metric Learning for Constrained Partitioning Problems

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...