资源论文Global graph kernels using geometric embeddings

Global graph kernels using geometric embeddings

2020-03-04 | |  55 |   38 |   0

Abstract

Applications of machine learning methods increasingly deal with graph structured data through kernels. Most existing graph kernels compare graphs in terms of features defined on small subgraphs such as walks, paths or graphlets, adopting an inherently local perspective. However, several interesting properties such as girth or chromatic number are global properties of the graph, and are not captured in local substructures. This paper presents two graph kernels defined on unlabeled graphs which capture global properties of graphs using the celebrated Lova?sz number and its associated orthonormal representation. We make progress towards theoretical results aiding kernel choice, proving a result about the separation margin of our kernel for classes of graphs. We give empirical results on classification of synthesized graphs with important global properties as well as established benchmark graph datasets, showing that the accuracy of our kernels is better than or competitive to existing graph kernels.

上一篇:Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization

下一篇:Hierarchical Conditional Random Fields for Outlier Detection: An Application to Detecting Epileptogenic Cortical Malformations

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...