资源论文Online Learning of Eigenvectors

Online Learning of Eigenvectors

2020-03-04 | |  66 |   54 |   0

Abstract

Computing the leading eigenvector of a symmetric real matrix is a fundamental primitive of numerical linear algebra with numerous applications. We consider a natural online extension of the leading eigenvector problem: a sequence of matrices is presented and the goal is to predict for each matrix a unit vector, with the overall goal of competing with the leading eigenvector of the cumulative matrix. Existing regretminimization algorithms for this problem either require to compute an eigen decompostion every iteration, or suffer from a large dependency of the regret bound on the dimension. In both cases the algorithms are not practical for large scale applications. In this paper we present new algorithms that avoid both issues. On one hand they do not require any expensive matrix decompositions and on the other, they guarantee regret rates with a mild dependence on the dimension at most. In contrast to previous algorithms, our algorithms also admit implementations that enable to leverage sparsity in the data to further reduce computation. We extend our results to also handle non-symmetric matrices.

上一篇:Consistent estimation of dynamic and multi-layer block models

下一篇:Exponential Integration for Hamiltonian Monte Carlo

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...