资源论文Classification with Low Rank and Missing Data

Classification with Low Rank and Missing Data

2020-03-04 | |  49 |   40 |   0

Abstract

We consider classification and regression tasks where we have missing data and assume that the (clean) data resides in a low rank subspace. Finding a hidden subspace is known to be computationally hard. Nevertheless, using a non-proper formulation we give an efficient agnostic algorithm that classifies as good as the best linear classifier coupled with the best low-dimensional subspace in which the data resides. A direct implication is that our algorithm can linearly (and non-linearly through kernels) classify provably as well as the best classifier that has access to the full data.

上一篇:Non-Stationary Approximate Modified Policy Iteration

下一篇:On Symmetric and Asymmetric LSHs for Inner Product Search

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...