资源论文Large-scale Distributed Dependent Nonparametric Trees

Large-scale Distributed Dependent Nonparametric Trees

2020-03-04 | |  63 |   36 |   0

Abstract

Practical applications of Bayesian nonparametric (BNP) models have been limited, due to their high computational complexity and poor scaling on large data. In this paper, we consider dependent nonparametric trees (DNTs), a powerful infinite model that captures time-evolving hierarchies, and develop a large-scale distributed training system. Our major contributions include: (1) an effective memoized variational inference for DNTs, with a novel birth-merge strategy for exploring the unbounded tree space; (2) a model-parallel scheme for concurrent tree growing/pruning and efficient model alignment, through conflict-free model partitioning and lightweight synchronization; (3) a data-parallel scheme for variational parameter updates that allows distributed processing of massive data. Using 64 cores in 36 hours, our system learns a 10K-node DNT topic model on 8M documents that captures both high-frequency and long-tail topics. Our data and model scales are orders-ofmagnitude larger than recent results on the hierarchical Dirichlet process, and the near-linear scalability indicates great potential for even bigge problem sizes.

上一篇:Multi-instance multi-label learning in the presence of novel class instances

下一篇:The Hedge Algorithm on a Continuum

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...