资源算法VoVNet-Detectron

VoVNet-Detectron

2020-03-05 | |  50 |   0 |   0

Detectron with VoVNet(CVPRW'19) Backbone Networks

This repository contains Detectron with VoVNet (CVPRW'19) Backbone Networks. This code based on pytorch imeplementation of Detectron (maskrcnn-benchmark)

Highlights

  • Memory efficient

  • Better performance, especially for small objects

  • Faster speed

Comparison with ResNet backbones

  • 2x schedule

  • same hyperparameters

  • same training protocols ( max epoch, learning rate schedule, etc)

  • NOT multi-scale training augmentation

  • 8 x TITAN Xp GPU

  • pytorch1.1

  • CUDA v9

  • cuDNN v7.2

Note

'*' indicates ResNeXt models from Detectron official caffe2 page.

BackboneDetectorTrain mem(GB)Inference time (ms)Box AP (AP/APs/APm/APl)Mask AP (AP/APs/APm/APl)DOWNLOAD
R-50Faster3.67837.5/21.3/40.3/49.5-link
V-39Faster3.97839.8/23.7/42.6/51.5-link







R-101Faster4.79739.6/22.8/43.2/51.9-link
V-57Faster4.48740.8/24.8/43.8/52.4-link
V-75Faster5.39641.2/24.1/44.3/53.0-link







X-101-64x4d*Faster-
41.3/-/-/---
X-101-32x8d*Faster-
40.6/-/-/---
V-93Faster6.111041.8/24.8/45.1/53.8-link







R-50Mask3.68338.6/22.1/41.3/51.434.9/16.0/37.3/52.2link
V-39Mask48141.0/24.6/43.9/53.136.7/17.9/39.3/53.0link







R-101Mask4.710240.8/23.2/44.0/53.936.7/16.7/39.4/54.3link
V-57Mask4.59042.0/25.1/44.9/53.837.5/18.3/39.8/54.3link
V-75Mask5.410642.4/26.0/45.5/54.837.7/18.9/40.4/54.9link







X-101-64x4d*Faster-
42.2/-/-/-37.2/-/-/--
X-101-32x8d*Faster-
41.7/-/-/-36.9/-/-/--
V-93Mask6.711442.7/24.9/45.8/55.338.0/17.7/40.9/55.2link

ImageNet pretrained weight

Installation

Check INSTALL.md for installation instructions which is orginate from maskrcnn-benchmark

Training

Follow the instructions maskrcnn-benchmark guides

For example,

export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file "configs/vovnet/e2e_faster_rcnn_V_39_FPN_2x.yaml"

Evaluation

Follow the instruction

First of all, you have to download the weight file you want to inference.

For examaple,

multi-gpu evaluation & test batch size 16,
wget https://dl.dropbox.com/s/f1per2rj4pi8t71/FRCN-V-39-FPN-2x-norm.pthexport NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_net.py --config-file "configs/vovnet/e2e_faster_rcnn_V_39_FPN_2x.yaml"   TEST.IMS_PER_BATCH 16 MODEL.WEIGHT FRCN-V-39-FPN-2x-norm.pth
For single-gpu evaluation & test batch size 1,
wget https://dl.dropbox.com/s/f1per2rj4pi8t71/FRCN-V-39-FPN-2x-norm.pth
CUDA_VISIBLE_DEVICES=0
python tools/test_net.py --config-file "configs/vovnet/e2e_faster_rcnn_V_39_FPN_2x.yaml" TEST.IMS_PER_BATCH 1 MODEL.WEIGHT FRCN-V-39-FPN-2x-norm.pth

TO DO LIST

  •  super slim models

  •  slim models

  •  Larger models

  •  Multi-scale training & test


上一篇:detectron-cascade-rcnn-exp

下一篇:detectron-trainings-visualization

用户评价
全部评价

热门资源

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • Keras-ResNeXt

    Keras ResNeXt Implementation of ResNeXt models...

  • spark-corenlp

    This package wraps Stanford CoreNLP annotators ...

  • shih-styletransfer

    shih-styletransfer Code from Style Transfer ...

  • inferno-boilerplate

    This is a very basic boilerplate example for pe...