资源论文Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization

Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization

2020-03-05 | |  56 |   53 |   0

Abstract

We develop a family of accelerated stochastic algorithms that optimize sums of convex functions. Our algorithms improve upon the fastest running time for empirical risk minimization (ERM), and in particular linear least-squares regression, across a wide range of problem settings. To achieve this, we establish a framework, based on the classical proximal point algorithm, useful for accelerating recent fast stochastic algorithms in a black-box fashion. Empirically, we demonstrate that the resulting algorithms exhibit notions of stability that are advantageous in practice. Both in theory and in practice, the provided algorithms reap the computational benefits of adding a large strongly convex regularization term, without incurring a corresponding bias to the original ERM problem.

上一篇:A Multitask Point Process Predictive Model

下一篇:Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...