资源论文Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes

Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes

2020-03-05 | |  48 |   50 |   0

Abstract

Gaussian vector autoregressive (VAR) processes have been extensively studied in the literature. However, Gaussian assumptions are stringent for heavy-tailed time series that frequently arises in finance and economics. In this paper, we develop a unified framework for modeling and estimating heavy-tailed VAR processes. In particular, we generalize the Gaussian VAR model by an elliptical VAR model that naturally accommodates heavy-tailed time series. Under this model, we develop a quantile-based robust estimator for the transition matrix of the VAR process. We show that the proposed estimator achieves parametric rates of convergence in high dimensions. This is the first work in analyzing heavy-tailed high dimensional VAR processes. As an application of the proposed framework, we investigate Granger causality in the elliptical VAR process, and show that the robust transition matrix estimator induces sign-consistent estimators of Granger causality. The empirical performance of the proposed methodology is demonstrated by both synthetic and real data. We show that the proposed estimator is robust to heavy tails, and exhibit superior performance in stock price prediction.

上一篇:Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple Plays

下一篇:Compressing Neural Networks with the Hashing Trick

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...